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The motion of a known [1] unperturbed physical pendulum 1s considered.  The
condition for stabllity of its motion (for the case when the pendulum sus-
pension point moves along a circle on the surface of a fixed sphere with
constant velocity) is established.

1, Let us consider the motion of a physical pendulum for which the point
of suspension (0 moves along the surface of a fixed § of radius 5 sur-
rounding the earth. Let us consider that the forces of attractlon of the
pendulum to earth reduce to the single force mp applied at the center of
gravity ¢ (Fig.1) and directed along the .geocentric vertical (normal to
the surface of the sphere). The distance (¢ 1s denoted by 7 .

Let us study the motlon of the pendulum 1n a translationally moving E&n{
coordinate system with center at the suspension point ¢ . Let us introduce
the Darboux trihedron x,, Yy, 2, . Let us dlrect its x,-axls alcng the
vector V_ of the absolute velocity of the suspension point ¢ , the z,-axis
along the normal to the sphere. Let us couple the x,y,z axes to the pendu-
lum in such a manner that the direction of the z-axls would coincide with
the direction of the line ¢¢0. The pendulum position relative to the Darboux

trihedron is determined by the angles §, 8 and ¢

> (Fig.2).
Let us assume that the pendulum moments of in-
7 ertia relative to the x and y-axes are the princi-

pal moments and equal mlR; the pendulum moment
of inertia relative to the z-axls 1s denoted by
c .

Such a pendulum 1s unperturbed, 1l.e. the z-axls
is directed along the geocentric vertical [1] while
its point of suspension moves arbitrarily over a
fixed sphere §

« Projectlons of the angular veloclty W, of the
Darboux trihedron on its axes have the form

170N
Po = 0, qy - _[_j({i, sy ro T T 0 (1'1)
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Fig. 1

Here g, and r, are considered to be known functlons of time. Evaluating
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the pro)jections of the angular veloclty of the trihedron x,y,z, on its axes
(Fig. 2), we find
P2 = qysinf sin® — rycosp sin® 4 1 cosO
@2 == g COS Y + rysin P -+ 0° (1.2)
ry = — goSin P cosB -+ rycosPpcos® 4P sind
Here and henceforth, the dot denotes differ-

entiation with respect to time.

Let w denote the vector of the.pendulum
angular velocity. We have

Oy, = P ®y, = g O, =r+9 (1.3)

- 2

Let us write the equations of pendulum motion
in the form

miRpy + Cqa (rz + @) — miRgare = M, Flg. 2
mlRqy + miRpery — Cpa(re + @) = M, (1.4)
[C(re + ) = Mzz

Here sz. M_uy and M22 are projections of the moments of the external
forces among which are the forces of inertia of the translatory motion.

Performing simple computations and taking account of (1.1), we find
sz = —mgl siny — mlRqqery 08 + miRqe® sin, M22 =0 (1.5)
M, —mgl cosP sin 0 -~ miRq," cos 0 -+ mlRgyre sin v sin 6 +-
+ mlRgq,® cos sin 0

2. The kinetic energy of the physical pendulum (Fig. 3) has the form
T = Uy S, 2=y oy (R 4 @)
Since g; == w X @,y then denoting OG = ], we have

T == YymV? - Ve < -t mV. (0 -—up) x 1]+
Sml R (gt 4 4D+ e (ra + @) 2.0

Let us now assume that the pendulum sus-
pension point moves along the arc of a circle
on the surface of a flxed sphere with a con-
stant velocity. In this case the angular
velocity of the Darboux trihedron uy, 1s
constant and the kinetic energy of tgxe pen-
dulum is explicitly independent of the time.

Since the forces of attraction are poten-
tial forces, the generalized energy integral

2]

To—Ty+ M =" (2.2)
holds.
Here 7T, 1s the part of the kinetic
Flg. 3 energy which 1is a quadratic form of the

generalized velocitles, 7, 1s the part of
the kinetic energy independent of the gener-
alized velocities, 1 1s the potentlal energy of the attractive force.

Taking account of {1.1) to {1.3) and (2.1), let us write the integral
(2.2) in the form
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Wy = Yy miR (%% cos?0 +-08°% 4 1/,C (' sin® + ¢)% -+ (2.3)
+ miRqgy (go cosY 4+ rgsiny) cos@® — Y, mIR (g sin — rgcosP)?sin 6 —
— Y, miR {gocosp + resiny)? — 1/, € {gy sing — rgcos )2 cos?8 —mglcosPpcosd = h

From the third equation of the system (1.4), we obtain the other first
integral

W, =C (rg+q) = H (2.4)
3. Using (1.1} to (1.5), let us write the equations of pendulum motion
for the case of wu, =const . We have (3.1)
miR (gop cosPsind -+ g6 sinYeos® & rg sinPsind —r8 cosP cosf -+
+ P cos8 — 0 sin8) - C (ggeosp + rosinP +07) (—ggsinpcosh -

+ rgecosPpeos® + P sin® + @) — miR (gocos ¢+ rosing +07) (— gy sinP cos® -
-+ rycospcos® + P sin@) =— mglsin P — miIR qoro cos P + mlR g sin

miIR (— qa ¥ sin + rgy'cos P+ 87) -+ miIR (g sin P sin® — rycosPpsin® +pcoshyx
X{— gpsin§cosO -~ rycosPpcosO + Prinf) — C (g sinP sin O —
— rocosPpsin® ¢ cos0) (— gpsinPcos® 4 rocosPpcosd -+ Psin@ 4 @) =
= — mglcosysin® -+ miBqgerasingsin® - miRqg cosysind

[C{— gysinpcos® -+ rgcosPpcosd + ¢ sin® + @) =0
The system of nonlinear Equations (3.1) has the particular solution
Pp=10, 8 =0 ¢-+r=20 {3.2}

];.:et us investigate 1lts stabllity. To do this, let us set in the perturbed
motion

Y=z, 8=z, =g, 0 =z, ¢ =—rs+ 7
and let us consider the function ¥ = 2W, + 2ry¥,
Expanding 1t in a power serles in x, (¢ = 1,2,..., 5), we obtain

W = W (0) + (mgl — Cqo? — miRr?) 2:* -+ (mgl— miRqe® — miRrs?) 292 -
-+ miR (x3® + 28 + C:::SZ -+ ...

Here w(0) 1s the value of the function ¥ when x, =90 (1 = 1,2,...,5);
the higher order terms are denoted by dots.

The function ¥ — w{(0) will be positive definite for sufficiently small
x; if

mgl — Cqo? — mlRr2 > 0, mgl — miRqo® — miRr® > 0 (3.3)
Since its derivative is zero by virtue of the equations of perturbed

motion, the unperturbed motion (3.2) will be stable upon compliance with the
inequalities (3.3).

If ¢ > miR , the inequalitiles (3.3) are replaced by the single condition
mgl > Cqo? + miRry?
If ¢ mIR , the inequalities (3.3) reduce to the condition

ug < ¥, (v == g/R) (3.4)
which agrees with the condition for stability of gyro-horizon compass [3].

It is not difficult to show that the condition (3.4} is necessary. To do
this one should write the necessary conditions for the stabllity of the
linearized system of equations (3.1) in the presence of small dissipative
forces,
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